

im Agrarsektor

ON THE MAGNITUDE OF BOUNDED RATIONALITY IN BUSINESS MANAGEMENT GAMES

a behavioural economic analysis of complex decision making

Philipp Hengel

Presentation at the SiAg Research Seminar December 10, 2009 in Halle

Outline of the Presentation

- 1. Problem Description and Objectives
- 2. Study Design
 - 2.1. Research Approach
 - 2.2. The Business Game "Spatz oder Taube" (SPOT)
 - 2.3. Normative Benchmarks
- 3. Results & the Sources of Bounded Rationality
- 4. Summary

Problem Description and Objectives

Problem:

- agricultural policies often do not have the desired effects
- traditional rational choice models applied by policy consultants do not allow for bounded rationality
- How much of an effect does bounded rationality have on the success of a business?

<u>Objectives:</u>

- quantify the amount of bounded rationality in complex decisionmaking
 - in more than one entrepreneurial domain
 - subject to dynamics
- separate the components of bounded rationality
 - inadequate information
 - limited computational abilities of decision-makers

Problem Description and Objectives

- business games provide very useful data for this approach
 - same initial situation and framework for all participants
 - comparability of decisions
 - applicability of benchmarks
 - incentive compatibility (i.e. through prices)
- properties of the business game
 - decisions in the entrepreneurial domains "investment", "production", "financing"
 - entrepreneurial goal: maximisation of terminal wealth
 - incentive compatibility
 - success depends on product prices, which, in turn, depend on the production activities of all players
 - benchmarks, that show the possible terminal wealth with no (less) bounded rationality are applicable for each player

Study Design – Research Approach

Q

Study Design – The Business Game "SPOT"

- multi-period game (8 periods) with the goal to gain the highest terminal wealth
- participants have to decide on
 - investments (5 different production facilities)
 - production (2 different products: sparrows and pigeons)
 - financing (annuity loan, open credit)
- framework conditions:
 - seed capital of 2,000 MU (monetary units)
 - periodic fixed costs of 300 MU
 - price for sparrows is fixed and known:
 - periods 1-4: 13.5 MU
 - periods 5-8: 12.0 MU
 - price for pigeons:

 $P = 25 - 0.14 \times \frac{\text{total amount of production}}{\text{number of players}}$

Study Design – The Business Game "Spatz oder Taube"

invest- ment	costs of acquisition (MU)	production capacity		useful life	production costs (MU/unit)		lending	internal rate of	
		sparrow	pigeon	userur me	sparrow	pigeon	(%)	return (%) ^{a)}	
А	70	20 of both together		2	9	9	0	10.7	
В	195	25	I	3	8	-	80	10.5	1 I/mit
С	340	-	25	3	-	6	80	9.6	0f 10 N/
D	1.560	75	I	3	3	-	50	11.9	
Е	1.760	-	75	3	-	2	50	11.9	

- annuity loan:
 - bound to investments, maximum uptake = lending limit
 - interest rate: 10%, duration: 3 years
- open credit:
 - maximum 2,000 MU, interest rate: 15%, duration: 1 year
- unused capital yields interest at a rate of 4%

Study Design – The Business Game "Spatz oder Taube"

- participants had to enter their price predictions for the next 3 periods
- to ensure incentive compatibility:
 - money prices for the best 5 participants
 - 50 € for the player with the best price predictions
- SPOT was played in winter term 2008/09 (group 1) and summer term 2009 (group 2)

	number of analysed players	average time of study (in semesters)	average self-assessment of economic knowledge (1 = very good, 5 = bad)
group 1	23	4.6	2.70
group 2	23	5.8	2.86
total	46	5.2	2.78

Study Design – Normative Benchmarks

- to quantify bounded rationality, we need to compare actual behaviour with normative benchmarks
- all decisions by the benchmarks are met c.p. (no influence on actually observed prices)
- to determine the benchmarks, we use (mixed-integer) multi-period linear programming (MLP)
- depending on the benchmark, different prices / price predictions are used

Study Design – Normative Benchmarks

- determination of Benchmark 1:
 - use of actually observed market prices as price predictions
 - price predictions = actual prices => no need to adjust plans over time
 - can be solved in one run
- determination of Benchmarks 2 & 3:
 - use of naive price prognosis and players' predicted prices, using the last price prognosis for all following periods and biasing by -1.5 MU for price predictions in period 5 (analogue to the drop of sparrow prices)
 - price prediction \neq actual prices
 - changes in future business organisation to adjust to different situation (caused by the difference between predicted and actual prices)
 - has to be solved for each period of decision-making
 - Benchmark 3 produces a different solution for each player

Results and the Sources of Bounded Rationality

		1	2	3	4	5	6	7
		actual	Benchmark 1		Benchmark 2		Benchmark 3	
		wealth	total	diff to 1	total	diff to 1	total	diff to 1
Group 1 (N=23)	mean	4,029	11,284	7,255	9,783	5,754	9,103	5,074
	max	8,691		2,593		1,092	10,039	1,348
	min	716		10,568		9,067	9,365	8,649
Group 2 (N=23)	mean	3,044	9,458	6,414	4,729	1,685	3,223	179
	max	5,057		4,401		- 328	777	- 4,280
	min	1,579		7,879		3,150	1,024	- 555
total mean		3,537	10,371	6,835	7,256	3,719	6,163	2,626

Results – Price Developments

Results and the Sources of Bounded Rationality

Summary

- comparison of players' actual behaviour with normative benchmarks (determined by formal planning)
- the improvement potential (magnitude of bounded rationality) is substantial
- realistic planning assumptions are as important as the ability to solve optimisation problems
- if inadequate assumptions are made, players can be "right for the wrong reasons"
- bounded rationality can be divided into limited information processing abilities and imperfect information.
- the impact of each component is subject to market dynamics

Summary - Implications for the Agricultural Sector

- large differences between technically equal entrepreneurs
 => formal planning paired with acquisition of good information has a great improvement potential
- policy consultants have to take into account that bounded rationality has a substantial effect on entrepreneurial decisions

"A good policy for the wrong decision-maker is a bad policy."

- usage of business games as a lab for better prediction of policy measures
- further questions:
 - How does attitude towards risk affect bounded rationality?
 - How does bounded rationality affect entrepreneurial behaviour when faced with changing framework conditions or a change in policies?

im Agrarsektor

ON THE MAGNITUDE OF BOUNDED RATIONALITY IN BUSINESS MANAGEMENT GAMES

a behavioural economic analysis of complex decision making

Philipp Hengel

Thank you very much for your attention!